Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

نویسندگان

  • Guanghui Lu
  • Shuangping Tao
چکیده

*Correspondence: [email protected] College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove thatMβ ,ρ ,q is bounded from Lebesgue space L1(μ) into the weak Lebesgue space L1,∞(μ), from the Lebesgue space L∞(μ) into the space RBLO(μ), and from the atomic Hardy space H1(μ) into the Lebesgue space L1(μ). Moreover, the authors also get a corollary, that is,Mβ ,ρ ,q is bounded on Lp(μ) with 1 < p <∞. MSC: non-homogeneous metric measure space; fractional type Marcinkiewicz integral; Lebesgue space; Hardy space; RBLO(μ)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Marcinkiewicz integrals on product spaces

‎In this paper‎, ‎we study the $L^p$ ($1

متن کامل

Fractional Type Marcinkiewicz Integral Operators Associated to Surfaces

In this paper, we discuss the boundedness of the fractional type Marcinkiewicz integral operators associated to surfaces, and extend a result given by Chen, Fan and Ying in 2002. They showed that under certain conditions the fractional type Marcinkiewicz integral operators are bounded from the Triebel-Lizorkin spaces Ḟ pq(R ) to L(R). Recently the second author, together with Xue and Yan, great...

متن کامل

A Commutator Theorem for Fractional Integrals in Spaces of Homogeneous Type

We give a new proof of a commutator theorem for fractional integrals in spaces of homogeneous type.

متن کامل

To my sons

Abstract: In the context of a finite measure metric space whose measure satisfies a growth condition, we prove ”T 1” type necessary and sufficient conditions for the boundedness of fractional integrals, singular integrals, and hypersingular integrals on inhomogeneous Lipschitz spaces. We also indicate how the results can be extended to the case of infinite measure. Finally we show applications ...

متن کامل

On fractional calculus associated to doubling and non-doubling measures

In this paper we present several proofs on the extension of M. Riesz fractional integration and di¤erentiation to the contexts of spaces of homogeneous type and measure metric spaces with non-doubling measures. 1. Introduction, some de…nitions, and a basic lemma Professor M. Ash asked me to write a survey article on some of the results that Stephen Vági and I obtained in the nineties on fractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016